A gradient approach to localization of deformation. I. Hyperelastic materials
نویسندگان
چکیده
By utilizing methods recently developed in the theory of fluid interfaces, we provide a new framework for considering the localization of deformation and illustrate it for the case of hyperelastic materials. The approach overcomes one of the major shortcomings in constitutive equations for solids admitting localization of deformation at finite strains, i.e. their inability to provide physically acceptable solutions to boundary value problems in the post-localization range due to loss of ellipticity of the governing equations. Specifically, strain-induced localized deformation patterns are accounted for by adding a second deformation gradient-dependent term to the expression for the strain energy density. The modified strain energy function leads to equilibrium equations which remain always elliptic. Explicit solutions of these equations can be found for certain classes of deformations. They suggest not only the direction but also the width of the deformation bands providing for the first time a predictive unifying method for the study of preand post-localization behavior. The results derived here are a three-dimensional extension of certain one-dimensional findings reported earlier by the second author for the problem of simple shear.
منابع مشابه
Modification of exponential based hyperelastic strain energy to consider free stress initial configuration and Constitutive modeling
In this research, the exponential stretched based hyperelastic strain energy was modified to provide the unstressed initial configuration. To this end, as the first step, the model was calibrated by the experimental data to find the best material parameters. The fitting results indicated material stability in large deformations and basic loading modes. In the second step, the initial pseudo str...
متن کاملNonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory
In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG materia...
متن کاملThe Effect of Evolving Damage on the Finite Strain Response of Inelastic and Viscoelastic Composites
A finite strain micromechanical model is generalized in order to incorporate the effect of evolving damage in the metallic and polymeric phases of unidirectional composites. As a result, it is possible to predict the response of composites with ductile and brittle phases undergoing large coupled inelastic-damage and viscoelastic-damage deformations, respectively. For inelastic composites, both ...
متن کاملApplication of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation
Contact mechanics is related to the deformation study of solids that meet each other at one or more points. The physical and mathematical formulation of the problem is established upon the mechanics of materials and continuum mechanics and focuses on computations involving bodies with different characteristics in static or dynamic contact. Contact mechanics gives essential information for the s...
متن کاملOn the modeling of internal parameters in hyperelastic biological materials
This paper concerns the behavior of hyperelastic energies depending on an internal parameter. First, the situation in which the internal parameter is a function of the gradient of the deformation is presented. Second, two models where the parameter describes the activation of skeletal muscle tissue are analyzed. In those models, the activation parameter depends on the strain and it is important...
متن کامل